博客
关于我
杭电 online judge 1018:Big Number
阅读量:573 次
发布时间:2019-03-10

本文共 1178 字,大约阅读时间需要 3 分钟。

为了确定给定整数 n 的阶乘的位数,我们可以使用斯特林公式进行近似计算。斯特林公式能够有效地估算很大数 n! 的位数,而不需要实际计算 n!。以下是详细的解决方案:

  • 斯特林公式:用于近似计算 ln(n!),然后通过对数转换为以10为底的对数,进而求得 n! 的位数。
  • 计算步骤
    • 计算 log(n) 和 log(2πn) 的和。
    • 根据斯特林公式计算 ln(n!) 的近似值。
    • 将近似值转换为以10为底的对数,计算其位数。
  • 边界情况:对于较小的 n 值,单独处理确保结果的准确性。
  • 解决方案代码

    #include 
    #include
    #define PI 3.141592653589793#define LN10 2.302585093using namespace std;int countDigits(int n) { if (n == 0) return 1; // 0! 是 1,是 1 位数 double log_n = log(n); double term1 = n * log_n; term1 -= n; double log_two_pi_n = log(2 * PI * n); term1 += 0.5 * log_two_pi_n; double log10_fact = term1 / LN10; int digits = static_cast
    (floor(log10_fact)) + 1; return digits;}int main() { int num; cin >> num; for (int i = 0; i < num; ++i) { int t; cin >> t; int res = countDigits(t); cout << res << endl; }}

    代码解释

  • 函数 countDigits:该函数接收整数 n,并利用斯特林公式计算 n! 的位数。
  • 特殊情况处理:当 n 为0时,直接返回1位,因为0! 定义为1。
  • 斯特林公式计算
    • log(n):计算自然对数。
    • term1:计算n * log(n) - n。
    • log(2 * π * n):计算 ln(2πn)。
    • term1 += 0.5 * log_two_pi_n:调整项。
    • log10_fact:将近似 ln(n!) 转换为 log10。
    • digits:通过取整(地板)并加1得到位数。
  • 主函数 main:读取输入,处理每个测试用例,输出结果。
  • 通过该代码,我们可以高效且准确地计算出给定整数 n 的阶乘的位数。

    转载地址:http://qfcvz.baihongyu.com/

    你可能感兴趣的文章
    nginx 反向代理 转发请求时,有时好有时没反应,产生原因及解决
    查看>>
    Nginx 反向代理+负载均衡
    查看>>
    Nginx 反向代理解决跨域问题
    查看>>
    Nginx 反向代理配置去除前缀
    查看>>
    nginx 后端获取真实ip
    查看>>
    Nginx 多端口配置和访问异常问题的排查与优化
    查看>>
    Nginx 如何代理转发传递真实 ip 地址?
    查看>>
    Nginx 学习总结(16)—— 动静分离、压缩、缓存、黑白名单、性能等内容温习
    查看>>
    Nginx 学习总结(17)—— 8 个免费开源 Nginx 管理系统,轻松管理 Nginx 站点配置
    查看>>
    Nginx 学习(一):Nginx 下载和启动
    查看>>
    nginx 常用指令配置总结
    查看>>
    Nginx 常用配置清单
    查看>>
    nginx 常用配置记录
    查看>>
    nginx 开启ssl模块 [emerg] the “ssl“ parameter requires ngx_http_ssl_module in /usr/local/nginx
    查看>>
    Nginx 我们必须知道的那些事
    查看>>
    Nginx 源码完全注释(11)ngx_spinlock
    查看>>
    Nginx 的 proxy_pass 使用简介
    查看>>
    Nginx 的 SSL 模块安装
    查看>>
    Nginx 的优化思路,并解析网站防盗链
    查看>>
    Nginx 的配置文件中的 keepalive 介绍
    查看>>