博客
关于我
杭电 online judge 1018:Big Number
阅读量:573 次
发布时间:2019-03-10

本文共 1178 字,大约阅读时间需要 3 分钟。

为了确定给定整数 n 的阶乘的位数,我们可以使用斯特林公式进行近似计算。斯特林公式能够有效地估算很大数 n! 的位数,而不需要实际计算 n!。以下是详细的解决方案:

  • 斯特林公式:用于近似计算 ln(n!),然后通过对数转换为以10为底的对数,进而求得 n! 的位数。
  • 计算步骤
    • 计算 log(n) 和 log(2πn) 的和。
    • 根据斯特林公式计算 ln(n!) 的近似值。
    • 将近似值转换为以10为底的对数,计算其位数。
  • 边界情况:对于较小的 n 值,单独处理确保结果的准确性。
  • 解决方案代码

    #include 
    #include
    #define PI 3.141592653589793#define LN10 2.302585093using namespace std;int countDigits(int n) { if (n == 0) return 1; // 0! 是 1,是 1 位数 double log_n = log(n); double term1 = n * log_n; term1 -= n; double log_two_pi_n = log(2 * PI * n); term1 += 0.5 * log_two_pi_n; double log10_fact = term1 / LN10; int digits = static_cast
    (floor(log10_fact)) + 1; return digits;}int main() { int num; cin >> num; for (int i = 0; i < num; ++i) { int t; cin >> t; int res = countDigits(t); cout << res << endl; }}

    代码解释

  • 函数 countDigits:该函数接收整数 n,并利用斯特林公式计算 n! 的位数。
  • 特殊情况处理:当 n 为0时,直接返回1位,因为0! 定义为1。
  • 斯特林公式计算
    • log(n):计算自然对数。
    • term1:计算n * log(n) - n。
    • log(2 * π * n):计算 ln(2πn)。
    • term1 += 0.5 * log_two_pi_n:调整项。
    • log10_fact:将近似 ln(n!) 转换为 log10。
    • digits:通过取整(地板)并加1得到位数。
  • 主函数 main:读取输入,处理每个测试用例,输出结果。
  • 通过该代码,我们可以高效且准确地计算出给定整数 n 的阶乘的位数。

    转载地址:http://qfcvz.baihongyu.com/

    你可能感兴趣的文章
    MySQL修改root密码的多种方法
    查看>>
    MySQL修改密码报错ERROR 1396 (HY000): Operation ALTER USER failed for ‘root‘@‘localhost‘
    查看>>
    Mysql全局优化参数
    查看>>
    MySQL全文索引实现简单版搜索引擎
    查看>>
    MySQL全面瓦解:安装部署与准备
    查看>>
    mysql共享锁与排他锁
    查看>>
    MySQL内存表使用技巧
    查看>>
    MySQL再叙(体系结构、存储引擎、索引、SQL执行过程)
    查看>>
    mysql出现错误的解决办法
    查看>>
    MySQL函数
    查看>>
    mysql函数汇总之字符串函数
    查看>>
    mysql函数汇总之数学函数
    查看>>
    mysql函数汇总之日期和时间函数
    查看>>
    mysql函数汇总之条件判断函数
    查看>>
    mysql函数汇总之系统信息函数
    查看>>
    MySQL函数简介
    查看>>
    mysql函数遍历json数组
    查看>>
    MySQL函数(转发)
    查看>>
    mysql分区表
    查看>>
    MySQL分层架构与运行机制详解
    查看>>